Self-assembly of the chaperonin GroEL nanocage induced at submicellar detergent
نویسندگان
چکیده
Protein nanoassemblies possess unique advantage in biomedical applications such as drug delivery, biocatalysis and vaccine development. Despite recent accomplishment in atomic structure data, the underlying molecular mechanism of protein self-assembly remains elusive, where considerable heterogeneity is often involved. Here we use E. coli chaperonin GroEL, a tetradecameric protein with a molecular weight of 805 kDa, to probe its transformation from cage-like oligomers to protein nanofibers. We show that sodium dodecyl sulfate (SDS), a widely-used protein denaturant, at submicellar concentration binds to and causes partial distortion of GroEL apical domain. Subsequently, the GroEL apical domain with altered secondary structural content converts the GroEL oligomers into modular structural units which are observed to self-assemble into cylindrical nanofibers under an agitated incubation in a physiological buffer. Interestingly, through targeted mutagenesis where two cysteine residues are introduced at the entry site of GroEL cage, we found that the formation of GroEL nanoassembly could be modulated depending on the redox condition of incubation. Without the need of chemical engineering, tunable GroEL nanofibers built by controlled-assembly are among the largest nanoscale bioassembly with broad applications.
منابع مشابه
Functional bacteriorhodopsin is efficiently solubilized and delivered to membranes by the chaperonin GroEL.
Soluble complexes between the tetradecameric chaperonin GroEL and integral membrane proteins can be efficiently formed by detergent dialysis. For example, GroEL14 was found to bind a limit of two molecules of bacteriorhodopsin (BR). The GroEL-solubilized BR molecules were rapidly ejected from the chaperonin complexes on the addition of ATP or adenosine 5'-[beta,gamma-imido]triphosphate but not ...
متن کاملChaperonin GroEL Reassembly: An Effect of Protein Ligands and Solvent Composition
Chaperonin GroEL is a complex oligomeric heat shock protein (Hsp60) assisting the correct folding and assembly of other proteins in the cell. An intriguing question is how GroEL folds itself. According to the literature, GroEL reassembly is dependent on chaperonin ligands and solvent composition. Here we demonstrate dependence of GroEL reassembly efficiency on concentrations of the essential fa...
متن کاملRefolding and reassembly of active chaperonin GroEL after denaturation.
Conditions are reported that, for the first time, permit the folding and assembly of active chaperonin, GroEL, following denaturation in 8 m urea. The folding could be achieved by dilution or dialysis, and the best yields required the simultaneous presence of ammonium sulfate and the Mg2+ complexes of ATP or ADP. Ammonium sulfate was the key to this particular protocol, since there was a small ...
متن کاملLocation and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-EM and biophysical techniques
Location and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-EM and biophysical techniques Location and flexibility of the unique C-terminal tail of Aquifex aeolicus co-chaperonin protein 10 as derived by cryo-EM and biophysical techniques, This is a PDF file of an unedited manuscript that has been accepted for publication. As a service ...
متن کاملInvolvement of GroEL in nif gene regulation and nitrogenase assembly.
Several approaches were used to study the role of GroEL, the prototype chaperonin, in the nitrogen fixation (nif) system. An Escherichia coli groEL mutant transformed with the Klebsiella pneumoniae nif gene cluster accumulated very low to nondetectable levels of nitrogenase components compared with the isogenic wild-type strain or the mutant cotransformed with the wild-type groE operon. In K. p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014